
1

Optimization in Software Engineering -
A Pragmatic Approach

Guenther Ruhe

Abstract

Empirical software engineering is concerned with the design and
analysis of empirical studies that include software products, processes,
and resources. Optimization is a form of data analytics in support
of human decision-making. Optimization methods are aimed to find
best decision alternatives. Empirical studies serve both as a model
and as data input for optimization. In addition, the complexity of the
models used for optimization trigger further studies on explaining and
validating the results in real world scenarios.

The goal of this chapter is to give an overview of the as-is and of
the to-be usage of optimization in software engineering. The emphasis
is on a pragmatic use of optimization, and not so much on describing
the most recent algorithmic innovations and tool developments. The
usage of optimization covers a wide range of questions from different
types of software engineering problems along the whole life-cycle. To
facilitate its more comprehensive and more effective usage, a checklist
for a guided process is described. The chapter uses a running ex-
ample Asymmetric Release Planning to illustrate the whole process.
A Return-on-Investment analysis is proposed as part of the problem
scoping. This helps to decide on the depth and breadth of analysis
in relation to the effort needed to run the analysis and the projected
value of the solution.

1 Introduction
The famous Aristotle (384 to 322 BC) is widely attributed with saying
It is the mark of an educated mind to rest satisfied with the degree of
precision which the nature of the subject admits and not to seek exact-
ness where only an approximation is possible [43]. Applying Aristotle’s
saying to software engineering means that we need to understand the
problem first, its nature and degree of uncertainty, before we start

2

running any sophisticated solution algorithm. In this chapter, we ex-
plore the usage and usefulness of optimization techniques in software
engineering. We take a pragmatic perspective and propose a model
looking at the Return-on-Investment and provide directions for future
research in this field.

The purpose of optimization is insight rather than numbers [26].
What counts is utilizing insight for making decisions. Software devel-
opment and evolution are full of decisions to be made on processes,

resources, artefacts, tools and techniques occurring at the different
stages of the life-cycle. Some of these decisions have a strong impact
on the success of the project. However, the information available for
doing that is typically incomplete, imprecise, and even contradictory.

The paradigm of software engineering decision support [53] em-
phasizes the decision-centric nature of software engineering. It out-
lines how different methods including modelling, measurement, simu-
lation as well as analysis and reasoning, can be used to support human
decision-making. Optimization is another piece of that decision sup-

port agenda. Looking for the best possible item, artefact, process,
action, or plan is tempting and a natural desire, but it is not auto-
matically clear what that actually means. Part of the difficulty is that
decisions typically are in the space of multiple criteria: Improving in
one direction typically requires compromising against another crite-

ria. In other cases, the data and information available are vague or
even contradictory. Finally: To what extent decisions are based on

rationality? Software development is a creative and human-centered
process, and humans do not necessarily act based on rational argu-
ments. So, another question arises: How valuable and how practical

is optimization for the area of (Empirical) Software Engineering?
The chapter shows all the many opportunities of optimization in

the various areas of software engineering (Section 9.2) and how to
avoid pitfalls in its application. Optimization is not something that
creates value automatically and easily. It is data intensive and requires
time and effort investment. Optimization includes the whole process
starting from the problem analysis, followed by modeling, running
solution algorithms, understanding and interpreting data, likely mod-
ifying data and/or the underlying model, and re-running algorithms.
In this chapter, we take a process view and provide a checklist for how
to perform this process (Section 9.3). Its implementation is illustrated
by a case study addressing asymmetric release planning (Section 9.4).
Usage and usefulness of optimization is the key concern of Section
9.5. The chapter is completed by recommendations for further read-
ing (Section 9.6) and conclusions on the future usage of optimization
in the context of software engineering (Section 9.7).

3

2 Optimization in Software Engineer
ing - Where?
The Capability Maturity Model Integration (CMMI) [13] character-
ized companies with the highest maturity CMMI level as Optimizing.
This highest level of maturity refers to the application error analy-
sis and process monitoring in order to optimize the current processes.
While optimization is applicable to all types of questions, in software
engineering it is primarily related to structured and semi-structured
decisions on all technical and managerial aspects of software develop-
ment and evolution.

The Software Engineering Body of Knowledge SWEBOK [1] lists
technical and managerial areas to describe the field of software engi-
neering:

• Software requirements

• Software design

• Software construction

• Software testing

• Software maintenance

• Software configuration management

• Software project management 1
• Software engineering process

• Software engineering models and methods

• Software quality

Decisions are made during all stages of the software life-cycle.
Depending on their type of control and impact, decisions are clas-
sified into operational (short-term), tactical (mid-term), and strategic
(long-term) decisions [4]. As another dimension of their classification,
decisions are classified, based on their input, into structured, semi-
structured, or unstructured decisions. The emphasis of optimization
is on tactical and strategic decisions based on structured or semi-
structured information. In Table 1 (see Appendix) we present a list
of publications using optimization methods in software engineering.
As it is impossible to present a complete list, we only selected papers
published since 2000. Among the many papers found, we picked those
having highest number of citations in Google scholar (as of September
4, 2019).

1Replacing Software Engineering Management as used in SWEBOK

4

Figure 1: Word cloud for publications devoted to optimization in software
engineering since 2000

Using the keywords of 84 optimization related papers published
since 2000, a word cloud was created and is presented in Figure 1.
We found a diversity of algorithms and concepts. Overall, the highest
number of publications is in testing, requirements engineering, and
design. This does not imply that there is nothing to optimize in
the remaining areas. Lack of proper data might be one reason, and
uncertainty in formulating explicit objectives and constraints another
one for these current deficits.

3 Recommended Process and Check-
list for Applying Optimization

3.1 Recommended Process
Optimization is a form of prescriptive analytics, aimed to propose
actions to the decision maker. Different models for the process of data
analytics (or data mining) exist, see the survey of Kurgan and Musilek
[38]. We adapted the widely accepted CRISP data mining process
introduced by Shearer [59] and integrated ideas of the engineering and
the empirical cycle described by Wieringa [68]. The process model

5

shown in Figure 2 establishes a link between (i) iterative software
development (object of study), (ii) empirical studies (as a means to
improve problem understanding, to create valid data, or to validate
the research design), and (iii) existing model and data repositories.

For iterative development, two sample iterations k and k+1 form
the optimization context. Each iteration is assumed of having design,
coding, and test activities, which result in a release version of the soft-
ware product. Different parts of these processes might be optimized
for higher efficiency. For example, there might be the problem of how
to perform re-factoring, to finding best test strategies and test cases,
to perform scheduling and staffing, or to decide about the functional-
ity of the upcoming releases. For any of these questions, optimization
helps to find a good or even the (formally) best answer. The process to
find these answers is composed of eight steps that are further outlined
in Section 3.2 by providing checklist questions to each step.

3.2 Checklist
Checklists are proven to be a means to facilitate the proper appli-
cation of the overwhelming amount of existing knowledge existing in
a field [25]. Similar to tools, applying checklists are no guarantee
for success, but hopefully serve as filters or recommendations. They
need continuous adaption to accommodate all the new directions and
developments.

Checklists have been used in software engineering, e.g., for case
studies, project risk analysis, and performing inspections. Here, we
propose a checklist for the usage of optimization in software engi-
neering. The checklist questions follow the key steps recommended
in Section 3.1. The questions are classified in terms of their usage.
M(andatory) questions need to be answered with ”yes” to make op-
timization a valuable effort. C(larification) questions (What?) are
aimed to qualify the setup of the whole process. TMTB questions
(How? How much?) are the ones that benefit from ”the more the
better”.

1 Scoping and ROI analysis: Scoping defines the problem con-
text and its boundaries. At this stage, performing an analysis of the
potential Return-on-Investment (ROI) helps to determine the depth
and the breadth of the investigation.

6

Figure 2: Process of performing optimization in the context of empirical
studies for iterative software development

7

Questions Type
How important is the problem? TMTB
How much time and money can be invested to solve
the problem? TMTB

Can the problem not be solved easily without opti-
mization? M

What are alternative solution approaches? C
How much is the optimization problem aligned with
business objectives? TMTB

How much impact has an optimized solution in the
problem context? TMTB

What is part of the investigation, what is not? C
Who are the key stakeholders and decision-makers? C

2 Modeling and problem formulation: Modeling and formu-
lation of the problem is the phase where the variables, constraints,
and objectives of the problem are formulated. The formulation needs
to be verified against the original problem statement.

Questions Type
What are the key independent problem variables? C
What is a reasonable granularity for problem formu-
lation? C

What are the dependent variables? C
What are the human resource, budget, and time con-
straints? C

What are the technological constraints? C

3 Solution design: The design step includes an analysis of what?
and how much is enough? Exploring possible solution alternatives and
its related tools depends on the scope selected. The design depends
on the size of the problem (and its subsequent computational effort),
the nature of the problem (linear, integer, convex, non-convex), and
its projected impact. The design also decides between the use of tra-
ditional methods (linear, integer programming), and one of the many
existing bio-inspired algorithms [7].

8

Questions Type
What baseline solution exist to compare with? C
What are possible solution method alternatives and
which ones have proven successful in similar context? C

Which related tools exist? TMTB
What are the expectations on optimization solutions
(heuristic vs approximation vs exact)? C

Is it search for just one (optimized) solution or for a
set of solutions? C

What scenarios are planned for running the algo-
rithms? C

How much would the optimization process benefit
from interaction with the decision makers? TMTB

4 Data collection: Collect and prepare data needed to run op-
timization. While data is seldom complete, empirical studies can be
used to improve the amount and quality of data. Goal oriented mea-
surement [63] is the established technique to guide the data collection
and analysis.

Questions Type
Is all necessary information available? M
Is all available information also reliable? TMTB
Is there a need for data cleaning? M
Is there agreement between stakeholders on the data? TMTB

5 Optimization: Specify parameters for the tool and algorithm
to execute optimization. How robust is the solution against changes
on the input? What is the impact of adding or changing constraints?

Questions Type
Which parameter settings are made and why? C
Should the parameter settings be varied and if so,
how? C

For randomized algorithms (e.g., bio-inspired algo-
rithms), how many replications are needed to make
sound conclusions?

C

Is there a time constraint for running the solution al-
gorithm? C

What are the termination criteria for the optimization
algorithm? C

6 Validation: The solution of the mathematical optimization
problem needs to be validated. How do the results compare to apply-

9

ing alternative algorithms? What do the results mean for the original
problem? Possibly, the scope, the problem formulation or the solution
design need to be adjusted.

Questions Type
How much do the generated solutions make sense in
the problem context? TMTB

How much do stakeholders agree with the proposed
solution(s)? TMTB

In case of conflicts, how they can be resolved? C
How robust is the proposed solution against changes
of input data? TMTB

7 Implementation: The selected solution is implemented as a
decision for the original problem.

Questions Type
Are the additional considerations to select one solu-
tion for final implementation in the original problem
context?

C

Is there any need to adjust the proposed solution to
the actual problem context? C

8 Evaluation: The usefulness of the implemented solution is eval-
uated in the original problem context and with the stakeholders in-
volved.

Questions Type
How much does the implemented solution solve the
original problem? TMTB

How much the implemented solution is accepted by
included stakeholders? TMBM

How much the implemented solution improves the
baseline? TMTB

The checklist serves a a filter. In the case that the two M questions
are not answered positive, optimization is not recommended. The
more information can be provide on C questions, the more guidance
is available to run the process. For the TMTB questions, they more
they accumulate ”more” evaluation, the more likely there is a positive
return on the optimization investment.

10

4 Optimization Case Study:
Asymmetric Release Planning
In this section, we go through a case study presented in [47]. The
purpose is to illustrate the steps of the process illustrated in Figure 2.

4.1 Scoping and ROI Analysis
Release planning is a key part of iterative development. It is the
process to decide about the functionality of upcoming releases of an
evolving software product. Typically, a large number of requests for
new or changing features as well as bug fixes are candidates to get
implemented in each release. For simplicity, we call them features
here. There are dependencies between the features that need to be
considered for their implementation.

Implementation of features is expected to create value. However,
there is an asymmetry in the sense that providing a feature does cre-
ate satisfaction, but not providing it does not automatically create
the same amount of dissatisfaction. This problem is called Asymmet-
ric Release Planning. The ROI is supposed to be high, especially for
products in a competitive market and when shipped in large quanti-
ties. The attractiveness of features is critical for success or failure of
a product. Looking into the best release strategy in consideration of
the asymmetry in value creation improves the traditional perspective
of just looking at customer satisfaction as the single criterion.

4.2 Modeling and Problem Formulation
To run optimization, we need to model the problem and provide a
formal problem description. Let F = {F (1) . . . F (N)} be a set of N
candidate features for development during the upcoming K product
releases. A feature is called postponed if it is not offered in one of the
next K releases. Each release plan is characterized by a vector x with
N components x(n)(n = 1 . . . N) defined as:

x(n) = k if feature F (n) is offered at release k (1)

x(n) = K + 1 if feature F (n) is postponed (2)

The objective of the planning approach is to maximize stakeholder
satisfaction and simultaneously minimize stakeholder dissatisfaction.
These two objectives are independent and competing with each other.
Pursuing each objective in isolation will create different release plan-
ning strategies.

11

To calculate stakeholder satisfaction S(n) of feature F(n), all stake-
holder responses related to satisfaction elements (Attractive and One-
dimensional) are divided by the sum of the Attractive, One-dimensional,
Must-be and Indifferent portions of that feature:

S(n) =
 FA(n) + FO(n)
FA(n) + FO(n) + FI(n) + FM (n)

(3)

Similarly, DS(n) is calculated by adding all responses with dissat-
isfaction elements (One-dimensional and Must-be) and dividing it by
the total amount of relevant responses:

DS(n) =
 FM (n) + FO(n)
FA(n) + FO(n) + FI(n) + FM (n)

(4)

For modeling of the total satisfaction objective, we follow the
proven concepts of the EVOLVE based algorithms, in particular, the
more recent EVOLVE II [54]. For a given time horizon of K releases,
there is a discount factor making the delivery of a feature less satis-
factory when it is offered later. While using a weighting (discounting)
factor w(k) for all releases k = 1...K, we assume that w(K + 1) = 0,
w(1) = 1 and

w(k) > w(k + 1) (k = 1 . . . K − 1) (5)

This assumption implies that the value of delivering a feature will
be the higher the earlier it is delivered. For a plan x assigning fea-
tures to releases, Total Satisfaction TS(x) is defined based on the
summation of the discounted feature values S(n) taken over all as-
signed features and all releases.

TS(x) =

w(k) × S(n) → Max! (6)
k=1...K n:x(n)=k

Total Dissatisfaction TDS(x) of a plan x follows the same idea as
just introduced for satisfaction. The longer a feature is not offered, the
higher the dissatisfaction. Similar to satisfaction, we introduce factors
describing the relative degree of dissatisfaction between releases. z(k)
is the dissatisfaction discount factor related to release k. As dissat-
isfaction of non-delivery increases over releases, we assume z(1) = 0,
z(K + 1) = 1 and

z(k) < z(k + 1) (k = 1 . . . K) (7)

If plan x would not offer any features at all, total dissatisfaction
TDS(x) would be the summation of all feature dissatisfaction values.
More generally, if a feature is offered in release k, then this creates a

12

dissatisfaction of z(k) × DS(n). If it is offered in the next release, no
dissatisfaction is created at all. Total dissatisfaction TDS(x) created
by a plan x is modeled as the summation of all adjusted feature values
DS(n), and this function needs to be minimized:

TDS(x) =

z(k) × DS(n) → Min! (8)
k=1...K+1 n:x(n)=k

Implementation of features is effort consuming. We make the sim-
plifying assumption of just looking at the total amount of (estimated)
effort needed per feature. The estimated effort for implementation of
feature F (n)(n = 1 . . . N) is denoted by effort(n). When planning K
subsequent releases, the consumed effort per release is not allowed to
exceed a given release capacity. For all releases k (k = 1 . . . K), this
capacity is denoted by Cap(k).

More formally, a feasible release plan x needs to satisfy all con-
straints of the form:

n:x

(n)=k

effort(n) ≤ Cap(k) for k = 1. . . K (9)

In Equation (9), effort consumption for release k is constrained
by the given capacity Cap(k). For each release k, the summation is
done over all the features F (n) that are assigned to this release, i.e.
fulfilling x(n) = k.

Among all the plans fulfilling resource constraints (known as fea-
sible plans), a plan x∗ is called a trade-off solution if no other plan
exists that is better on one criterion and at the same time not worse
in the other. This means that we are looking for feasible plans x∗
with the property that there is no other feasible plan x/ (also called a
dominating plan) such that is better in one dimension and not worse
in all the others.

Asymmetric Release Planning ARP: We consider a given set
of features F (n) with feature values S(n) and DS(n)(n = 1 . . . N).
Among all the plans fulfilling resource constraints, the ARP problem
is to find trade-off solutions for concurrently maximizing TS(x) and
minimizing TDS(x). That means, ARP is the problem of finding
trade-off release plans that are balancing satisfaction and dissatisfac-
tion.

4.3 Solution Design
Software release planning can be solved by a variety of algorithms.
For a more recent analysis we refer to [2]. In its simplest form, greedy
heuristics could be applied. The general greedy principle is to select

13

the best local features at each iteration, where the definition of lo-
cally best varies between the heuristics [15]. With no backtracking,
greedy solutions are fast and often ”good enough”. The quality of
the solutions depend on the problem structure and the instance of the
problem. It can be quite far from the optimum in specific instances.

Integer linear programming was used by Veerapen et al. [64] to
solve the single and bi-objective Next Release Problem. While there
has been a dominance of search-based techniques in the past (start-
ing with the genetic algorithm of Greer and Ruhe [27]), the authors
have shown that integer linear programming-based out-performs the
NSGA-II [17] genetic approach on large bi-objective instances. For
the bi-objective asymmetric release problem, we propose a method of
solving a sequence of single-criterion optimization problems, each of
them generating a new or an existing trade-off solution. The step-size
for varying the parameter can be selected by the concrete problem.
For the implementation, we apply the (mixed) integer linear program-
ming optimizer Gurobi[30] version 6.4 and its interface MATLAB to
manage data.

4.4 Data Collection
Data collection covered towards elicitation of features, effort estima-
tion, and feature evaluation by stakeholders. The lists of features,
effort estimation, continuous Kano survey, and results are available
online2.

Stakeholders: We invited 24 software engineering graduate stu-
dents to serve as stakeholders. Even though students were not a direct
customer of the company, they were familiar with the domain and were
considered to be representative for the purpose of this case study.

Weight of stakeholders: The survey participants provided a
self-evaluation in terms of their familiarity with Over-the-Top (OTT)
services and mobile applications. At the beginning of the survey,
stakeholders stated their domain expertise on a Likert scale ranging
from one to nine. We used this value as the weight of stakeholders for
the planning process.

Features: The pool of candidate app features was extracted from
the description of 261 apps, all of them providing media content over
the internet without the involvement of an operator in the control or
distribution of the OTT TV services. A commercial text analysis tool
was used to retrieve 42 candidate features. Domain experts evaluated
the meaningfulness of extracted features and eliminated the phrases
which did not point into any OTT feature. Feature extraction itself

2http://www.maleknazn.com/tools-and-datasets

14

was managed by the case study company and resulted in 36 features
further investigated.

Feature value: To predict the impact of offering versus missing
features, we applied the Kano analysis [35]. We performed a survey
with a continuous Kano design and asked the two types of questions
(functional and dysfunctional). For each feature, each of the stake-
holders expressed the percentages that the feature matches one of the
five possible answers per question.

Effort: The effort for developing each feature was estimated by do-
main experts within the company. A product manager and two senior
developers estimated the effort needed (in person hours) to develop
each feature. They applied a triangular (three point) effort estimation
to estimate the optimistic, pessimistic and most-likely effort amount
needed to deliver a feature. The three estimates were combined using
a weighted average.

Capacity: To show the impact of tight, medium, and more re-
laxed resource availability, we ran three concurrent scenarios with
three varying release capacities Cap(1) of 112.7 (lower bound), 367.4
(most probable), and 625.5 (upper bound) person hours, respectively.

4.5 Optimization
We were running the optimization solver for three defined optimiza-
tion scenarios in correspondence to three varying capacity levels. Each
time, a set of alternative solutions is generated. In total, 14 struc-
turally trade-off solutions (plans) were generated. Each plan repre-
sents one possible way to balance between satisfaction and dissatis-
faction of stakeholders. Based on the equivalence between parametric
and multi-objective optimization [14], each solution set is received
from running a sequence of single-criterion problems.

4.6 Validation
We performed a comparison between the quality of the optimized solu-
tions in comparison to those obtained from (i) random search and (ii)
heuristic search. Using random search is selecting a feature randomly
as long as the effort for implementing that feature is less than the avail-
able capacity. The results showed that optimized solutions strongly
dominate all the 1,000 solutions generated by random searching.

We also compared the results against running eight different heuris-
tics. 66.7% of the heuristic plans were dominated with at least one of
the fully optimized solutions. This demonstrates that heuristics are
fast and conceptually easy, but often not good enough. The compre-

15

hensiveness of solutions generated from the optimization in conjunc-
tion with their guaranteed quality is considered a strong argument in
favor of the proposed approach.

4.7 Implementation and Evaluation
We conducted a survey to understand stakeholders preference among
the various plans generated. The survey included 20 stakeholders. Us-
ing Fleiss Kappa test [60] for measuring inter-rater agreement showed
a slight to poor agreement between the 20 participants.

By comparing plans per stakeholder, among stakeholders and be-
tween criteria, we found that:

• One plan does not fit all: For both planning objectives, there is
substantial variation between stakeholders in terms of what they
consider their preferred solution.

• One criterion is not enough: Six of the 20 stakeholders have
a varying top preference when comparing plans selected from
satisfaction and dissatisfaction perspective.

5 Usage and Usefulness of Optimiza-
tion

5.1 Limits of Optimization Models
As any model, even the most detailed models lack some details in com-
parison to the real-world ecosystem. This means that the representa-
tion of real world always lacks some details and contains inaccuracies.
Meignan et al. [46] described four types of potential optimization
model limitations:

• Approximation of complex problem’s aspects: Formulation of
real-world problems might be difficult because of the lack of
quantifying constraints or objectives. Human involvement, as
being the case in software engineering, often requires to use ap-
proximations of the phenomena.

• Simplification for model tractability: Even if the phenomena un-
der investigation are quantifiable, simplification of the model is
needed to apply a computational optimization approach. For
example, linear models are often used for that purpose.

• Limited specifications: In some cases, the problem is not (yet)
well defined. This might be caused by the lack of problem and
domain knowledge.

16

• Lack of resources: Optimization is not for free but consumes time
and cost. This implies making compromises and simplifications.

5.2 Difficulties which are Specific to the Dis-
cipline of Software Engineering
Software engineering differentiates from other disciplines by a number
of factors [56]. Among those factors, some of them are critical for
deciding and running optimization:

• High degree of uncertainty in the software project and product
scope.

• Planning and estimating of software projects is challenging be-
cause these activities depend on requirements that are often im-
precise or based on lacking information.

• Software development is non-deterministic. The data received
from observations are incomplete and sometimes contradictory.

• Objective measurement and quantification of software quality is
difficult.

As a conclusion of the above, we need to check more carefully which
type of optimization is most appropriate and in which situation and
how much we should pursue this pathway. Is it always ”The more the
better”? The following subsection proposes three attributes to answer
this question.

5.3 How Much is Enough?
There is a very broad spectrum of decision problems that potentially
benefit from running optimization. But which technique to apply in
what situation? Both the problems under investigation and the tech-
niques available have characteristics that are relevant to decide which
one is used for what. Along with this understanding goes the question
How much is enough?. In the sequel, we define three key dimensions
which have shown to have substantial impact on the breadth and depth
of analytics of optimization. The key motivation for doing this is the
statement attributed to Aristotle mentioned in the introduction.

5.3.1 Validity - How valid is the problem definition?

There is no easy way to measure validity of a model (being always
wrong and sometimes useful), but some possibilities to verify its be-
haviour from running through some scenarios with an outcome already

17

known. Validity can also relate to wickedness [52] which refers to the
difficulty to find a proper formulation of the problem and a termina-
tion criterion for its solution.

5.3.2 Cost - How much effort is needed to run the whole
optimization process?

The cost of performing the process outlined in Figure 1 is mainly
determined by the resources consumed in it. The cost might vary
substantially between the cases. For example, the effort for data col-
lection is highly influenced by the amount and quality of data already
available and the effort needed to elicit additional information. Once
the problem is defined, the notion of computational complexity [24]
guides the effort estimation to determine a solution with a proven
quality. This effort typically depends on the size (small, medium, or
large number of variables involved), difficulty (low, medium, or high in
terms of number of constraints, objectives), the linearity versus non-
linearity, and the continuous versus discrete nature of the variables
included.

5.3.3 Value - How valuable is it to find an optimized
solution?

How much value is added to the real-world problem when a optimized
and carefully analyzed solution is applied versus an ad hoc one sug-
gested by the domain expert? This value is associated with the impact
of the decision to be made. Operational decisions are in the day-to-
day business with typically short-term impact on a company. Tactical
ones are concerned with work assignments, selection of tools, reuse of
artefacts. Strategic decisions have the longest impact, but are also
based on the strongest degree of uncertainty.

5.4 Return-on-Investment
Comparing the investment made into something with the potential re-
turn achieved from this investment is a common question, mainly trig-
gered from economical considerations. For example, Erdogmus et al.
[21] analyzed the ROI of quality investment. The authors state that
”We generally want to increase a software products quality because
fixing existing software takes valuable time away from developing new
software. But how much investment in software quality is desirable?
When should we invest, and where?”

The same idea could be used to the application of optimization.
More precisely, evaluating the impact of decisions made based on opti-

18

mization versus the baseline decision-making approach, typically some
form of relying on intuition. There are at least three prerequisites for
doing that: (i) Characterization of the context, (ii) Characterization
and quantification of the investment (cost), and (iii) Projection of the
value added from implementing an optimized solution.

For the characterization of context, Dyba et al [20] introduced a
template that has the two main dimensions called omnibus context and
discrete context. The first dimension includes the 5 W’s: What? Who?
Where? When? and Why? The second one is along the technical,
social, and environmental aspects of the context which are likely vary
in detail from case to case. Specifying the context attributes allows to
related specific empirical results to the characteristics where they are
coming form. It also helps to provide more specific recommendations
about when and how well certain things work.

Software development and evolution is a value-creating process.
However, there seems to be a ”disconnect” between the decision crite-
ria that guide software engineers and the value creation criteria of an
organization [8]. Projecting the impact of an improvement in decision-
making against a technical parameter (e.g., test coverage) in terms of
its impact can be expressed as Net Present Value (NPV) but is a chal-
lenging task. If analyzing a project over a period of n time periods,
the formula for the net present value of a project is:

n

NPV =
R(t)

(1 + d)t

(10)

t=0

Therein, R(t) denotes the difference between net cash inflow and
net cash outflow during a single period t. The model assumes a dis-
count rate d to transfer future value to the today value. The added
NPV that is from applying an optimized versus a baseline solution is
the difference between their respective NPV’s.

NPVAdded = NPVOptimizedSolution − NPVBaseline (11)

The cost of analytics is determined from both the depth and the
breadth of investigations. The depth can be exemplified by the extent
of running optimization algorithms to achieve close to optimal results.
Another example refers to the level of details included in visualization.
The extent of applying multiple analytical techniques to data from
multiple sources to achieve results refers to breadth. Solving a problem
by looking for data from different sources and/or performing method
triangulation is of clear value but also of clear additional cost. The
variation of perspectives in visualization is an example for breadth.

19

Figure 3 shows a ROI curve of technology usage. Following some
phase of increase, there is a saturation point. After that, further in-
vestment does not further pays off. We hypothesize a similar principal
behaviour for the usage of optimization and analytics in general.

5.5 ROI of Asymmetric Release Plan Opti-
mization
It is difficult to quantify the ROI. The value of providing the right fea-
tures at the right time depends on the competitiveness of the market
the product is related to, the number of product instances sold, and
maturity of data collection and decision-making processes the organi-
zation is in. For the running example, additional effort was needed
to elicit the information related to stakeholder satisfaction and dis-
satisfaction. We performed a survey with six company managers and
asked: To what extent do you think the additional effort (from an-
swering ten questions per feature based on Kano) is worthwhile? In
response, five managers agreed or strongly agreed, and one manager
was neutral about the efficiency of the Kano model.

6 Recommended Further Reading
Optimization is an established discipline with roots going back to
names such as Leonid Kantorovich, George Dantzig, and John von
Neumann. Its applications range through all disciplines of Science,
Engineering, and Economics. There are numerous models, methods

Figure 3: Expected ROI curve from technology investment.

20

and tools. The encyclopedia of optimization [22] gives an overview. In
its essence, optimization is the process of searching for the best out of
a pool of alternatives. What means best is described by one or multi-
ple criteria. The alternatives are explicitly or implicitly described (by
constraints). For the actual optimization step in the whole problem
solving process (Step 5 in Figure 1), different alternatives can be con-
sidered, ranging from simple heuristics to meta and hyper heuristics
to exact common purpose solvers. The encyclopedia of optimization
edited by Floudas Pardalos [22] gives a good overview. In the sequel,
we provide guidance for further reading for three emerging directions
of using optimization in the context of (empirical) software engineer-
ing.

6.1 Meta and Hyper Heuristics
In the area of software engineering, the term Search-based Software
Engineering (SBSE) was coined by a paper of Harman and Jones
[32], who argued that software engineering is ideal for the applica-
tion of meta-heuristic search techniques, such as genetic algorithms,
simulated annealing, and tabu search. In November 2017, the SBSE
repository [71] at University College London counted 1727 relevant
publications. More recently, the portfolio of techniques has been en-
larged by other bio-inspired algorithms that are designed and following
the behavior of biological systems. These algorithms are intuitive and
have proven successful in many occasions including software engineer-
ing [36].

Independently, hyper-heuristics have been designed (see [10] for
a state-of-the art survey). The key characteristic is that these algo-
rithms operate on a search space of heuristics (or heuristic compo-
nents) rather than directly on the search space of solutions to the
underlying problem that is being addressed [10]. For the area of
testing, Balera et al. [5] performed a systematic mapping study on
hyper-heuristics. For the multi-objective next release problem and
analyzing ten real-world data sets, Zhang et al. [73] have shown that
hyper-heuristics are particularly effective.

6.2 Bio-inspired Algorithms
Bio-inspired optimization is an emerging paradigm which encompasses
the principles and inspiration of the biological evolution of nature
to develop new and robust optimization techniques [7]. These algo-
rithms are drawing attention from the scientific community due to the
increasing complexity of the problems, increasing range of potential

21

solutions in multi-dimensional hyper-planes, dynamic nature of the
problems and constraints, and challenges of incomplete, probabilistic
and imperfect information for decision making. Not much exploration
has happened in the true application space for the rest of these al-
gorithms, probably due to the recency of some of these developments
or due to the lack of availability of pseudo-codes which can be used
directly. There is a need for studies highlighting the preferred ap-
plication for algorithms like artificial bee colony algorithm, bacterial
foraging algorithm, firefly algorithm, leaping frog algorithm, bat al-
gorithm, flower pollination algorithm and artificial plant optimization
algorithm in actual problem contexts.

6.3 Interactive Optimization
Interactive optimization approaches acknowledge existing limits to
modeling and parameter settings and values the user’s expertise in the
application domain [46]. Interactive approaches maintain the human
expert in the problem solving loop. Meignan et al. [46] distinguish
between problem-oriented interaction and search-oriented interaction.
For the first one, the user can either adjust or enrich the optimization
problem, e.g., by adjusting existing constraints or objectives or by
defining new ones. For search-oriented interaction, the user actively
influences the search procedure, e.g., by parameter tuning.

7 Conclusions
Optimization is an important means to improve software development
and evolution. Optimizing processes is the ultimate goal of most ma-
ture CMMI level 5 organizations. Practically, there is almost no limit
to consider optimization in software engineering. But as for any tech-
nology, its usage needs to be guided. Besides the opportunity to en-
large the scope of optimization, this chapter emphasizes the need to
take a closer look at the ROI of optimization. Taking into account the
perceived validity of the problem formulation, the ROI model serves
as justification for investing into optimality. In the language of the
CMMI model, it is unlikely that a specific part of the software de-
velopment landscape is highly optimized if the whole surrounding is
immature. The ROI estimation servers as a guidance in this decision
process of deciding How much optimization is needed and how much
is enough?.

Optimization by no means is a silver bullet. We are not fasci-
nated just by numbers, but are more interested in insight, especially
actionable insight. If designed and performed properly (for example,

22

as guided in the recommended process of Figure 1), it is a valuable
part of decision support. Its pragmatic usage means to understand the
scope and degree of its usage. Furthermore, it often means searching
not for just one ultimate solution but for a diversity of alternative
solutions which is formulated as the diversification principle [54]:

A single optimal solution to a cognitive complex (optimization) prob-
lem is less likely to serve the original problem when compared to a
portfolio of optimized solutions being qualified AND structurally di-
versified.

Acknowledgment
This research was supported by the Natural Sciences and Engineer-
ing Research Council of Canada, Discovery Grant RGPIN-2017-03948.
The literature analysis of the study was supported by Debjyoti Mukher-
jee. The author is grateful to discussions with and comments received
from Maleknaz Nayebi and Julian Harty.

23

References
[1] A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. Tripp.

Software engineering body of knowledge. IEEE Computer Soci-
ety, Angela Burgess, 2004.

[2] D. Ameller, C. Farré, X. Franch, and G. Rufian. A survey on
software release planning models. In Product-Focused Software
Process Improvement: 17th International Conference, PROFES
2016, Trondheim, Norway, November 22-24, 2016, Proceedings
17, pages 48–65. Springer, 2016.

[3] G. Antoniol, M. Di Penta, and M. Harman. Search-based tech-
niques applied to optimization of project planning for a massive
maintenance project. In 21st IEEE International Conference on
Software Maintenance (ICSM’05), pages 240–249. IEEE, 2005.

[4] J. E. Aronson, T.-P. Liang, and E. Turban. Decision support
systems and intelligent systems, volume 4. Pearson Prentice-Hall,
2005.

[5] J. M. Balera and V. A. de Santiago Júnior. A systematic mapping
addressing hyper-heuristics within search-based software testing.
Information and Software Technology, 2019.

[6] A. Barreto, M. d. O. Barros, and C. M. Werner. Staffing a soft-
ware project: A constraint satisfaction and optimization-based
approach. Computers & Operations Research, 35(10):3073–3089,
2008.

[7] S. Binitha, S. S. Sathya, et al. A survey of bio inspired optimiza-
tion algorithms. International Journal of Soft Computing and
Engineering, 2(2):137–151, 2012.

[8] B. W. Boehm and K. J. Sullivan. Software economics: a roadmap.
In Proceedings of the conference on The future of Software engi-
neering, pages 319–343. ACM, 2000.

[9] M. Bowman, L. C. Briand, and Y. Labiche. Solving the class re-
sponsibility assignment problem in object-oriented analysis with
multi-objective genetic algorithms. IEEE Transactions on Soft-
ware Engineering, 36(6):817–837, 2010.

[10] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa,
E. Ö zcan, and R. Qu. Hyper-heuristics: A survey of the state of
the art. Journal of the Operational Research Society, 64(12):1695–
1724, 2013.

[11] C. K. Chang, H.-y. Jiang, Y. Di, D. Zhu, and Y. Ge. Time-line
based model for software project scheduling with genetic algo-

24

rithms. Information and Software Technology, 50(11):1142–1154,
2008.

[12] W.-N. Chen and J. Zhang. Ant colony optimization for software
project scheduling and staffing with an event-based scheduler.
IEEE Transactions on Software Engineering, 39(1):1–17, 2013.

[13] M. B. Chrissis, M. Konrad, and S. Shrum. CMMI guidlines for
process integration and product improvement. Addison-Wesley
Longman Publishing Co., Inc., 2003.

[14] J. Cĺ ımaco, C. Ferreira, and M. E. Captivo. Multicriteria in-
teger programming: An overview of the different algorithmic
approaches. In Multicriteria analysis, pages 248–258. Springer,
1997.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to algorithms, volume 6. MIT Press Cambridge, 2001.

[16] V. Cortellessa, F. Marinelli, and P. Potena. An optimization
framework for build-or-buy decisions in software architecture.
Computers & Operations Research, 35(10):3090–3106, 2008.

[17] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, and A. Fast. Nsga-
ii. IEEE Transactions on evolutionary computation, 6(2):182–
197, 2002.

[18] M. Di Penta, M. Harman, and G. Antoniol. The use of search-
based optimization techniques to schedule and staff software
projects: an approach and an empirical study. Software: Practice
and Experience, 41(5):495–519, 2011.

[19] J. J. Durillo, Y. Zhang, E. Alba, M. Harman, and A. J. Nebro. A
study of the bi-objective next release problem. Empirical Software
Engineering, 16(1):29–60, 2011.

[20] T. Dyb̊a, D. I. Sjøberg, and D. S. Cruzes. What works for whom,
where, when, and why?: on the role of context in empirical soft-
ware engineering. In Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement,
pages 19–28. ACM, 2012.

[21] H. Erdogmus, J. Favaro, and W. Strigel. Return on investment.
IEEE Software, 21(3):18–22, 2004.

[22] C. A. Floudas and P. M. Pardalos. Encyclopedia of optimization,
volume 1. Springer Science & Business Media, 2001.

[23] S. Frey, F. Fittkau, and W. Hasselbring. Search-based genetic
optimization for deployment and reconfiguration of software in
the cloud. In 2013 35th international conference on software en-
gineering (ICSE), pages 512–521. IEEE, 2013.

25

[24] M. R. Garey and D. S. Johnson. Computers and intractability,
volume 29. wh freeman New York, 2002.

[25] A. Gawande. Checklist manifesto, the (HB). Penguin Books
India, 2010.

[26] A. M. Geoffrion. The purpose of mathematical programming is
insight, not numbers. Interfaces, 7(1):81–92, 1976.

[27] D. Greer and G. Ruhe. Software release planning: an evolutionary
and iterative approach. Information and Software Technology,
46(4):243–253, 2004.

[28] L. Grunske. Identifying good architectural design alternatives
with multi-objective optimization strategies. In Proceedings of
the 28th international conference on Software engineering, pages
849–852. ACM, 2006.

[29] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic algo-
rithm for optimized feature selection with resource constraints
in software product lines. Journal of Systems and Software,
84(12):2208–2221, 2011.

[30] Gurobi. Gurobi optimizer reference manual, 2012.

[31] M. Harman, R. M. Hierons, and M. Proctor. A new representa-
tion and crossover operator for search-based optimization of soft-
ware modularization. In GECCO, volume 2, pages 1351–1358,
2002.

[32] M. Harman and B. F. Jones. Search-based software engineering.
Information and software Technology, 43(14):833–839, 2001.

[33] M. Harman and L. Tratt. Pareto optimal search based refactoring
at the design level. In Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 1106–1113. ACM,
2007.

[34] S.-J. Huang, N.-H. Chiu, and L.-W. Chen. Integration of the grey
relational analysis with genetic algorithm for software effort esti-
mation. European Journal of Operational Research, 188(3):898–
909, 2008.

[35] N. Kano, N. Seraku, F. Takahashi, and S. Tsuji. Attractive qual-
ity and must-be quality. Journal of the Japanese Society for Qual-
ity Control, 14(2):39–48, 1984.

[36] A. K. Kar. Bio inspired computing–a review of algorithms and
scope of applications. Expert Systems with Applications, 59:20–
32, 2016.

26

[37] T. Kistler and M. Franz. Continuous program optimization: A
case study. ACM Transactions on Programming Languages and
Systems (TOPLAS), 25(4):500–548, 2003.

[38] L. A. Kurgan and P. Musilek. A survey of knowledge discovery
and data mining process models. The Knowledge Engineering
Review, 21(1):1–24, 2006.

[39] K. Lakhotia, M. Harman, and P. McMinn. A multi-objective ap-
proach to search-based test data generation. In Proceedings of the
9th annual conference on Genetic and evolutionary computation,
pages 1098–1105. ACM, 2007.

[40] W. B. Langdon and M. Harman. Optimizing existing software
with genetic programming. IEEE Transactions on Evolutionary
Computation, 19(1):118–135, 2014.

[41] Y.-F. Li, M. Xie, and T. Goh. A study of mutual information
based feature selection for case based reasoning in software cost
estimation. Expert Systems with Applications, 36(3):5921–5931,
2009.

[42] Y. Liu, T. M. Khoshgoftaar, and N. Seliya. Evolutionary op-
timization of software quality modeling with multiple reposito-
ries. IEEE Transactions on Software Engineering, 36(6):852–864,
2010.

[43] T. W. Lucas and J. E. McGunnigle. When is model complexity
too much? illustrating the benefits of simple models with hughes’
salvo equations. Naval Research Logistics (NRL), 50(3):197–217,
2003.

[44] Y. Ma and C. Zhang. Quick convergence of genetic algo-
rithm for qos-driven web service selection. Computer Networks,
52(5):1093–1104, 2008.

[45] S. G. MacDonell and M. J. Shepperd. Combining techniques
to optimize effort predictions in software project management.
Journal of Systems and Software, 66(2):91–98, 2003.

[46] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, and N. Gaud.
A review and taxonomy of interactive optimization methods in
operations research. ACM Transactions on Interactive Intelligent
Systems (TiiS), 5(3):17, 2015.

[47] M. Nayebi and G. Ruhe. Asymmetric release planning - compro-
mising satisfaction against dissatisfaction. IEEE Transactions on
Software Engineering, 2018.

[48] A. Ngo-The and G. Ruhe. Optimized resource allocation for soft-
ware release planning. IEEE Transactions on Software Engineer-
ing, 35(1):109–123, 2008.

27

[49] A. L. Oliveira, P. L. Braga, R. M. Lima, and M. L. Cornélio. Ga-
based method for feature selection and parameters optimization
for machine learning regression applied to software effort estima-
tion. information and Software Technology, 52(11):1155–1166,
2010.

[50] K. Praditwong, M. Harman, and X. Yao. Software module clus-
tering as a multi-objective search problem. IEEE Transactions
on Software Engineering, 37(2):264–282, 2010.

[51] J. Ren, M. Harman, and M. Di Penta. Cooperative co-
evolutionary optimization of software project staff assignments
and job scheduling. In International Symposium on Search Based
Software Engineering, pages 127–141. Springer, 2011.

[52] H. W. Rittel and M. M. Webber. Wicked problems. Man-made
Futures, 26(1):272–280, 1974.

[53] G. Ruhe. Software engineering decision support–a new paradigm
for learning software organizations. In International Workshop on
Learning Software Organizations, pages 104–113. Springer, 2002.

[54] G. Ruhe. Product release planning: methods, tools and applica-
tions. CRC Press, 2010.

[55] G. Ruhe et al. Hybrid intelligence in software release planning.
International Journal of Hybrid Intelligent Systems, 1(1-2):99–
110, 2004.

[56] G. Ruhe and C. Wohlin. Software project management: set-
ting the context. In Software Project Management in a Changing
World, pages 1–24. Springer, 2014.

[57] M. O. Saliu and G. Ruhe. Bi-objective release planning for evolv-
ing software systems. In Proceedings ESEC/FSE, pages 105–114.
ACM, 2007.

[58] O. Saliu and G. Ruhe. Supporting software release planning deci-
sions for evolving systems. In 29th Annual IEEE/NASA Software
Engineering Workshop, pages 14–26. IEEE, 2005.

[59] C. Shearer. The crisp-dm model: the new blueprint for data
mining. Journal of data warehousing, 5(4):13–22, 2000.

[60] D. J. Sheskin. Handbook of parametric and nonparametric statis-
tical procedures. crc Press, 2003.

[61] Y. Singh, A. Kaur, and B. Suri. Test case prioritization using
ant colony optimization. ACM SIGSOFT Software Engineering
Notes, 35(4):1–7, 2010.

28

[62] M. Van den Akker, S. Brinkkemper, G. Diepen, and
J. Versendaal. Software product release planning through op-
timization and what-if analysis. Information and Software Tech-
nology, 50(1-2):101–111, 2008.

[63] R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach.
Goal question metric (gqm) approach. Encyclopedia of software
engineering, 2002.

[64] N. Veerapen, G. Ochoa, M. Harman, and E. K. Burke. An integer
linear programming approach to the single and bi-objective next
release problem. Information and Software Technology, 65:1–13,
2015.

[65] H. Wada, P. Champrasert, J. Suzuki, and K. Oba. Multiobjec-
tive optimization of sla-aware service composition. In 2008 IEEE
Congress on Services-Part I, pages 368–375. IEEE, 2008.

[66] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos.
Timeaware test suite prioritization. In Proceedings of the 2006
international symposium on Software testing and analysis, pages
1–12. ACM, 2006.

[67] Z. Wang, K. Tang, and X. Yao. Multi-objective approaches to
optimal testing resource allocation in modular software systems.
IEEE Transactions on Reliability, 59(3):563–575, 2010.

[68] R. J. Wieringa. Design science methodology for information sys-
tems and software engineering. Springer, 2014.

[69] M. Xiao, M. El-Attar, M. Reformat, and J. Miller. Empirical
evaluation of optimization algorithms when used in goal-oriented
automated test data generation techniques. Empirical Software
Engineering, 12(2):183–239, 2007.

[70] S. Yoo and M. Harman. Pareto efficient multi-objective test case
selection. In Proceedings of the 2007 international symposium on
Software testing and analysis, pages 140–150. ACM, 2007.

[71] Y. Zhang, M. Harman, and A. Mansouri. The SBSE reposi-
tory: A repository and analysis of authors and research articles
on search based software engineering. Last access March 11, 2019.

[72] Y. Zhang, M. Harman, and S. A. Mansouri. The multi-objective
next release problem. In Proceedings of the 9th annual confer-
ence on Genetic and evolutionary computation, pages 1129–1137.
ACM, 2007.

[73] Y. Zhang, M. Harman, G. Ochoa, G. Ruhe, and S. Brinkkem-
per. An empirical study of meta-and hyper-heuristic search for
multi-objective release planning. ACM Transactions on Software
Engineering and Methodology (TOSEM), 27(1):3, 2018.

29

Appendix

Abbreviation Full Text
GA Genetic Algorithm
SA Simulated Annealing
NSGA - II Non-dominated Sorting Genetic Algorithm II
MOEAs Multi-Objective Evolutionary Algorithms
ACO Ant Colony Optimization
ILP Integer Linear Programming
QoS Quality-of-Service
EAs Evolutionary Algorithms
GSA Genetic Simulated Annealing

SA/AAN Simulated Annealing with Advanced Adaptive
Neighborhood

CCEA Cooperative Co-Evolutionary Algorithms
LSR Least-squares Linear Regression
CBR Case-based reasoning

Ta
bl

e
1:

 S
el

ec
te

d
op

tim
iz

at
io

n
st

ud
ie

s
in

 s
of

tw
ar

e
en

gi
ne

er
in

g

A
re

a
P

ro
b

le
m

O

p
ti

m
. C

ri
te

ri
a

O
p

ti
m

.
M

et
h

od

Y
ea

r
C

it
at

io
n

s1
R

ef

R
eq

ui
re

m
en

ts

Se
le

ct
in

g
op

ti
m

al
 fe

at
ur

es
 fo

r
ne

xt

re
le

as
e

V
al

ue

G
A

20

04

43
4

[2
7]

R
eq

ui
re

m
en

ts

N
ex

t r
el

ea
se

 p
ro

bl
em

C

os
t,

va
lu

e
Pa

re
to

 o
pt

im
al

 g
en

et
ic

al

go
ri

th
m

, N
SG

A
 -

II

20
07

23

7
[7

2]

R
eq

ui
re

m
en

ts

So
ft

w
ar

e
re

le
as

e
pl

an
ni

ng

M
ax

im
iz

e
th

e
va

lu
e

of
 th

e
pr

od
uc

t f
or

 e
ac

h
re

le
as

e
H

yb
ri

d
in

te
lli

ge
nc

e
20

04

12
5

[5
5]

R
eq

ui
re

m
en

ts

R
el

ea
se

 p
la

nn
in

g
fo

r
ev

ol
vi

ng
 s

ys
-

te
m

s
V

al
ue

G

A

20
05

10

9
[5

8]

R
eq

ui
re

m
en

ts

So
ft

w
ar

e
re

le
as

e
pl

an
ni

ng

Se
le

ct
io

n
of

 h
ig

hl
y

co
up

le
d

fe
at

ur
es

 in
 th

e s
am

e r
el

ea
se

IL

P

20
07

10

3
[5

7]

R
eq

ui
re

m
en

ts

N
ex

t r
el

ea
se

 p
ro

bl
em

M

in
im

iz
e

 c
os

t
an

d
m

ax
i-

m

iz
e

 c
us

to
m

er
 s

at
is

fa
ct

io
n

G
A

,
E

vo
lu

ti
on

ar
y

St
ra

te
gy

20

11

85

[1
9]

R
eq

ui
re

m
en

ts

So
ft

w
ar

e
re

le
as

e
pl

an
ni

ng

O
pt

im
iz

ed
 re

so
ur

ce
 a

llo
ca

-
ti

on

IL
P

, G
A

20

09

58

[4
8]

D
es

ig
n

M
od

ul
ar

iz
at

io
n

C
oh

es
iv

en
es

s
Pa

re
to

 o
pt

im
al

 g
en

et
ic

al

go
ri

th
m

20

10

27
4

[5
0]

D
es

ig
n

R
ef

ac
to

ri
ng

Se

ar
ch

 b
as

ed
 r

ef
ac

to
ri

ng

Pa
re

to
 o

pt
im

al
it

y
20

07

20
9

[3
3]

D

es
ig

n
Pe

rf
or

m
an

ce
 o

f s
of

tw
ar

e
G

en
et

ic
 im

pr
ov

em
en

t
G

en
et

ic
 P

ro
gr

am
m

in
g

20
14

17

3
[4

0]

D
es

ig
n

M
od

ul
ar

iz
at

io
n

C
oh

es
iv

en
es

s
G

A

20
02

16

3
[3

1]

D
es

ig
n

Fe
at

ur
e

se
le

ct
io

n
V

al
ue

G

A

20
11

15

6
[2

9]

D
es

ig
n

Q
oS

-d
ri

ve
n

w
eb

 s
er

vi
ce

 s
el

ec
ti

on

Q
ui

ck
 c

on
ve

rg
en

ce

G
A

20

08

15
6

[4
4]

D

es
ig

n
O

pt
im

al
 u

se
 o

f t
he

 h
ar

dw
ar

e
Pe

rf
or

m
an

ce

Pr
of

ili
ng

, o
pt

im
iz

at
io

n
20

03

13
4

[3
7]

D

es
ig

n
R

ea
ss

ig
n

m
et

ho
ds

 a
nd

 a
tt

ri
bu

te
s

to

cl
as

se
s

in
 a

 c
la

ss
 d

ia
gr

am

C
la

ss
 c

ou
pl

in
g

an
d

co
he

-
si

on

M
ul

ti
-o

bj
ec

ti
ve

 G
A

20

10

10
7

[9
]

1 G
oo

gl
e

Sc
ho

la
r

ci
ta

ti
on

s
as

 o
f S

ep
. 5

, 2
01

9

30

Ta
bl

e
1:

 S
el

ec
te

d
op

tim
iz

at
io

n
st

ud
ie

s
in

 s
of

tw
ar

e
en

gi
ne

er
in

g

A
re

a
P

ro
b

le
m

O

p
ti

m
. C

ri
te

ri
a

O
p

ti
m

.
M

et
h

od

Y
ea

r
C

it
at

io
n

s1
R

ef

D
es

ig
n

C
ho

os
in

g
th

e
op

ti
m

al
 a

rc
hi

te
ct

ur
al

de

si
gn

 a
lt

er
na

ti
ve

R

ed
uc

e
de

ve
lo

pm
en

t c
os

t,
im

pr
ov

e
qu

al
it

y
E

A
s

20
06

80

[2

8]

D
es

ig
n,

M

ai
nt

en
an

ce

Q
oS

-a
w

ar
e

se
rv

ic
e

co
m

po
si

ti
on

C

on
cr

et
e

se
rv

ic
es

 c
om

bi
na

-
ti

on

G
A

20

08

98

[6
5]

Te
st

in
g

R
eg

re
ss

io
n

te
st

 p
ri

or
it

iz
at

io
n

Q
ua

lit
y

G
A

20

06

36
6

[6
6]

Te

st
in

g
R

eg
re

ss
io

n
te

st
 c

as
e

se
le

ct
io

n
C

od
e

co
ve

ra
ge

, p
as

t
fa

ul
t-

hi

st
or

y
de

te
ct

io
n

an
d

ex
e-

cu

ti
on

 c
os

t

G
A

20

07

33
3

[7
0]

Te
st

in
g

Te
st

 d
at

a
ge

ne
ra

ti
on

M

ul
ti

-o
bj

ec
ti

ve

br
an

ch

co
ve

ra
ge

M

O
E

A
s

20
07

16

0
[3

9]

Te
st

in
g

Te
st

 c
as

e
pr

io
ri

ti
za

ti
on

 fo
r

re
gr

es
-

si
on

 te
st

in
g

Fa
ul

t c
ov

er
ag

e
A

C
O

20

10

80

[6
1]

Te
st

in
g

C
om

pa
ri

ng
 d

iff
er

en
t a

lg
or

it
hm

s
fo

r
te

st
 c

as
e

ge
ne

ra
ti

on

C
ov

er
ag

e
G

A
,

SA
,

G
SA

,
SA

/A
A

N

20
07

76

[6

9]

Pr
oj

ec
t

M
an

ag
em

en
t

So
ft

w
ar

e
ef

fo
rt

 e
st

im
at

e
A

cc
ur

at
e

ef
fo

rt
 e

st
im

at
io

n
G

A
 w

it
h

G
re

y
R

at
io

na
l

A
na

ly
si

s
20

08

23
8

[3
4]

Pr
oj

ec
t

M
an

ag
em

en
t

St
af

fin
g

of
 s

of
tw

ar
e

pr
oj

ec
t

V
al

ue

C
on

st
ra

in
t s

at
is

fa
ct

io
n

20
08

16

6
[6

]

Pr
oj

ec
t

M
an

ag
em

en
t

So
ft

w
ar

e
ef

fo
rt

 e
st

im
at

e
In

pu
t

fe
at

ur
e

su
bs

et
,

pa
ra

m
et

er
s

fo
r

m
ac

hi
ne

le

ar
ni

ng

G
A

20

10

13
9

[4
9]

Pr
oj

ec
t

M
an

ag
em

en
t

Pr
oj

ec
t t

as
k

sc
he

du
lin

g
an

d
hu

m
an

re

so
ur

ce
 a

llo
ca

ti
on

Fl

ex
ib

ili
ty

A

C
O

20

12

13
8

[1
2]

1 G
oo

gl
e

Sc
ho

la
r

ci
ta

ti
on

s
as

 o
f S

ep
. 5

, 2
01

9

31

Ta
bl

e
1:

 S
el

ec
te

d
op

tim
iz

at
io

n
st

ud
ie

s
in

 s
of

tw
ar

e
en

gi
ne

er
in

g

A
re

a
P

ro
b

le
m

O

p
ti

m
. C

ri
te

ri
a

O
p

ti
m

.
M

et
h

od

Y
ea

r
C

it
at

io
n

s1
R

ef

Pr
oj

ec
t

M
an

ag
em

en
t

C
om

pa
ri

ng
 d

iff
er

en
t t

ec
hn

iq
ue

s
fo

r
pl

an
ni

ng
 r

es
ou

rc
e

al
lo

ca
ti

on

D
ur

at
io

n
G

A
, S

A
, H

ill
 C

lim
bi

ng

20
05

12

8
[3

]

Pr
oj

ec
t

M
an

ag
em

en
t

So
ft

w
ar

e
pr

oj
ec

t s
ch

ed
ul

in
g

Sc
he

du
lin

g
G

A

20
08

12

1
[1

1]

Pr
oj

ec
t

M
an

ag
em

en
t

A
ss

ig
n

fe
at

ur
es

 to
 r

el
ea

se
s

V
al

ue

IL
P

20

08

10
8

[6
2]

Pr
oj

ec
t

M
an

ag
em

en
t

C
om

pa
ri

ng
 s

of
tw

ar
e

ef
fo

rt
 p

re
di

c-

ti
on

 te
ch

ni
qu

es

A
cc

ur
ac

y
of

 p
re

di
ct

io
n

E
xp

er
t j

ud
gm

en
t,

LS
R

,
C

B
R

20

03

10
5

[4
5]

Pr
oj

ec
t

M
an

ag
em

en
t

So
ft

w
ar

e
co

st
 e

st
im

at
io

n
Fe

at
ur

e
se

le
ct

io
n

w
ith

lo

w
er

 c
om

pl
ex

it
y

M
ut

ua
l

in
fo

rm
at

io
n

ba
se

d
fe

at
ur

e
se

le
ct

io
n

20
09

95

[4

1]

Pr
oj

ec
t

M
an

ag
em

en
t

D
ec

id
in

g
w

he
th

er
 to

 b
uy

 o
r

bu
ild

 a

co
m

po
ne

nt

C
os

t a
nd

 q
ua

lit
y

op
ti

m
iz

a-

ti
on

IL

P

20
08

93

[1

6]

Pr
oj

ec
t

M
an

ag
em

en
t

A
llo

ca
ti

on
 o

f t
es

ti
ng

 r
es

ou
rc

e
R

el
ia

bi
lit

y
an

d
te

st
in

g
co

st

M
O

E
A

s
20

10

87

[6
7]

Pr
oj

ec
t

M
an

ag
em

en
t

U
se

 o
f s

ea
rc

h-
ba

se
d

op
ti

m
iz

at
io

n
te

ch
ni

qu
es

 fo
r

m
an

ag
em

en
t a

ct
iv

i-

ti
es

St
af

f a
nd

 ta
sk

 a
llo

ca
ti

on

G
A

, N
SG

A
 I

I
20

11

58

[1
8]

Pr
oj

ec
t

M
an

ag
em

en
t

So
ft

w
ar

e
pr

oj
ec

t s
ta

ff
in

g
an

d
jo

b
sc

he
du

lin
g

Te
am

 s
ta

ff
in

g
an

d
w

or
k

pa
ck

ag
e

sc
he

du
lin

g
C

C
E

A

20
11

51

[5

1]

Pr
oc

es
s

C
lo

ud
 c

om
pu

ti
ng

 d
ep

lo
ym

en
t a

nd

re
-c

on
fig

ur
at

io
n

R
es

po
ns

e
ti

m
e

an
d

co
st

G

A

20
13

12

5
[2

3]

Q
ua

lit
y

So
ft

w
ar

e
qu

al
it

y
m

od
el

in
g

C
os

t
G

en
et

ic
 P

ro
gr

am
m

in
g

20
10

11

7
[4

2]

1 G
oo

gl
e

Sc
ho

la
r

ci
ta

ti
on

s
as

 o
f S

ep
. 5

, 2
01

9

32

